9. ročník

Elektrický prúd v kovovom vodiči. Tepelné účinky prúdu

Z chémie viete, že všetky prvky sa skladajú z atómov a jednotlivé atómy sa skladajú z protónov, elektrónov a neutrónov. Protóny majú kladný elektrický náboj, elektróny záporný elektricky náboj a neutróny elektrický náboj nemajú – preto sa volajú neutróny, lebo sú elektricky neutrálne. Atóm je elektricky neutrálny, má rovnaký počet elektrónov a protónov. V kovoch sa elektróny, ktoré sú vo vonkajšej  vrstve elektrónového obalu, chovajú tak, akoby nepatrili ku konkrétnemu atómu, ale ku všetkým atómom v ich okolí. Hovoríme im voľné elektróny. Keď na konce kovového vodiča pripojíme zdroj elektrickej energie, tieto voľné elektróny sa začnú pohybovať smerom ku kladnému pólu zdroja. Continue reading

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod môžeme vytvoriť zo zdroja elektrickej energie, napr. batérie a spotrebiča, napr. žiarovky. Elektrickým obvodom prechádza elektrický prúd, ak je obvod uzavretý a je v ňom zapojený zdroj elektrickej energie. Aby elektrickým obvodom prechádzal elektrický prúd, musia byť všetky jeho časti vodivé.

Látky, ktoré vedú elektrický prúd, nazývame elektrické vodiče.

Látky, ktoré nevedú elektrický prúd, nazývame nevodiče alebo elektrické izolanty.

Látky, ktoré za istých okolností vedú elektrický prúd a za iných okolností elektrický prúd nevedú nazývame polovodiče.

Continue reading

Elektrické vlastnosti látok. Elektrický náboj

Pri obliekaní či vyzliekaní svetra ste neraz pozorovali, že sa vám zelektrizovali vlasy, niekedy sa vám to stane aj pri česaní – vlasy sú priťahované ku hrebeňu. Keď sú vlasy vlhké, zelektrizovanie nepozorujeme.

Zelektrizovanie telies možno dosiahnuť viacerými spôsobmi. Príčina zelektrizovania je v štruktúre látky. 

Podobne, ako magnetické vlastnosti dokážeme využiť aj elektrické vlastnosti látok. Continue reading

Magnetizmus

História

Slovo magnet pochádza z gréckeho μαγνήτης λίθος (magnētēs lithos), čo znamená „magnéziový kameň“. Magnesia bola oblasť v Antickom Grécku, dnešná Manisa v Turecku, kde boli objavené zásoby magnetitu už v antike. Starodávni čínski navigátori boli  prvými  používateľmi magnetických kompasov.

Pokusy v laboratóriu

V laboratóriu sme sledovali správanie magnetov. Zistili sme, že dva magnety sa dvoma dvojicami koncov priťahujú a dvoma odpudzujú.  Ďalej sme zistili, že magnetická strelka, keď sa ustáli, ukazuje stále tým istým smerom a keď sme sa po laboratóriu so strelkou pohybovali, ukazovala tým istým smerom.

Ak by sme sa pozreli do mapy Košíc, zistili by sme, že červený koniec magnetickej strelky ukazuje na sever a biely na juh. Červený koniec magnetky nazývame severný magnetický pól (označujeme ho N) a biely koniec nazývame južný magnetický pól (označujeme ho S).

Označenie magnetických pólov vychádza s anglických názvov pre sever a juh – north a south. Continue reading

Magnetické pole Zeme

Už pred viac než 2000 rokmi Číňania zistili, že magnet, ak sa môže voľne otáčať, ukazuje jedným pólom magnetu na sever a druhým na juh.

Keďže tú časť magnetickej strelky kompasu ktorá ukazuje na sever, sme nazvali severný magnetický pól a ktorá ukazuje na juh,  južný magnetický pól a rovnaké magnetické póly sa odpudzujú a opačné priťahujú,  na severnej pologuli sa nachádza južný magnetický pól Zeme a na južnej sa nachádza severný magnetický pól Zeme. Pozri obrázok vľavo. V skutočnosti sa magnetické póly Zeme nenachádzajú presne na severnom a južnom póle, sú mierne posunuté. Túto skutočnosť schematicky znázorňuje obrázok vpravo (čierna priamka je os otáčania Zeme, modrá pramka je spojnica medzi severným a južným geomagnetickým pólom). Continue reading