6. ročník

Fyzikálne veličiny, jednotky a meradlá

Pre každú vlastnosť, ktorú možno merať, možno zaviesť fyzikálnu veličinu a jednotku merania. Zatiaľ ste sa oboznámili s nasledujúcimi fyzikálnymi veličinami a ich jednotkami, alebo ste ich používali v bežnom živote.

Fyzikálna veličina Značka fyz. veličiny Jednotky fyz. veličiny Značky jednotiek Meradlá
dĺžka l, d meter m meter, pravítko, posuvné meradlo, skladací meter, laserový alebo ultrazvukový diaľkomer, …
plocha

(v matematike obsah)

S meter štvorcový m^2 odmeráme rozmery a vypočítame plochu
objem V liter, meter kubický l\,, m^3 odmerný valec, odmerka, plynomer, vodomer, pri pravidelných telesách odmeráme rozmery a vypočítame objem
hmotnosť m kilogram, tona, metrický cent kg, t, q váhy
sila F newton N silomer
tlak p pascal Pa tlakomer, barometer, výpočtom zo vzorca p=\cfrac{F}{S}
čas t, \tau sekunda, minúta, hodina, deň s, min, h hodiny, stopky
teplota t, T
veľkým T sa zvykne označovať teplota, ak je udávaná v kelvinoch
stupeň celsia, kelvin ^oC, K teplomer

Continue reading

Zásady merania hmotnosti

Aby meranie hmotnosti bolo čo najpresnejšie, musíme dodržať tieto pravidlá:

  1. Voľba váh – vyberieme váhy, ktoré sú schopné danú hmotnosť odmerať, musia tiež zodpovedať požadovanej presnosti merania.
  2. Zistíme presnosť s akou dané váhy vážia. Pre veľmi malé hodnoty hmotnosti potrebujeme merať s presnosťou na 1 g až 1 mg. Vedci pri niektorých experimentoch s ešte väčšou presnosťou. Pri meraní hmotnosti človeka sa uspokojíme aj s presnosťou na 500 g.
  3. Pri vážení musia váhy stáť na vodorovnej podložke. Laboratórne váhy sa musia upraviť nastavovacími skrutkami. Pri veľmi presných meraniach sú váhy umiestnené na stabilnom mieste, kde nie sú žiadne otrasy. Váhy pred meraním by sme mali vyvážiť (pri laboratórnych váhach zistíme, či sú v rovnováhe, keď na miskách nič nie je, ak nie sú v rovnováhe, položíme na jednu z misiek malé kúsky papiera, kým nebudú v rovnováhe).
  4. Pri vážení kladieme vážené telesá a závažia do stredu misky.
  5. Pri odčítaní hodnoty na displeji musíme počkať na ustálenie hodnoty. Podobne sa musí ustáliť aj ukazovateľ na laboratórnych váhach (môžeme sa uspokojiť aj tým, že sa vychyľuje rovnakou mierou na jednu i druhú stranu).
  6. Pri zápise číselenej hodnoty hmotnosti uvedieme aj jednotku hmotnosti.

Continue reading

Meranie hmotnosti tuhých telies

S vážením ste sa stretávali od útleho detstva. S vážením sa najčastejšie stretávame v obchode pri predaji potravín napríklad mäsa a zeleniny. Ak vaša mama alebo babka pečú, suroviny musia  pomerne presne odvážiť, inak koláč nebude mať  správny tvar, chuť a farbu. Ešte presnejšie sa musí vážiť v lekárni, pri príprave liekov.

Vážením sa určuje hmotnosť telies.

Hmotnosť je fyzikálna veličina. Hmotnosť je (zjednodušene povedané) mierou množstva hmoty. Značka hmotnosti je m.

Základnou jednotkou hmotnosti je kilogram, značka kg. Continue reading

Vitálna kapacita pľúc

Doma ste vyrobili spirometer – prístroj na meranie vitálnej kapacity pľúc.

Použili ste fľašu na zaváranie, vrchnák, dve slamky a izolačný materiál napríklad plastelínu alebo lepidlo. Do vrchnáku ste urobili dve dierky, cez ktoré ste prestrčili slamky. Diery okolo slamiek ste zaizolovali a zafixovali. Jedna zo slamiek bola zastrčená tak, aby dosahovala takmer na dno, druhá bola väčšmi vysunutá von, aby sme do nej mohli fúkať vzduch. Continue reading

Využitie vlastností plynov

Prezentácia v PDF

Vlastnosti plynov

Rôznymi jednoduchými pokusmi sme si dokázali, že plyny majú nasledujúce vlastnosti:

  • tečú, sú tekuté (aj kvapaliny sú tekuté, preto plyny a kvapaliny nazývame tekutiny)
  • dajú sa ľahko rodeliť
  • nemajú stály tvar, majú tvar nádoby, v ktorej sa nachádzajú, vždy vyplnia celý objem nádoby
  • ľahko sa dostanú na ťažko dostupné miesta
  • sú stlačiteľné, nemajú stály objem
  • rozpínajú sa

Pascalov zákon

Pascalov zákon platí aj pre plyny.

Ak zatlačíme na plyn v uzavretej nádobe, zväčší sa všade vnútri v plyne tlak rovnako vo všetkých smeroch.

Všetky vyššie uvedené vlastnosti vieme využiť v rôznych zariadeniach a výrobkoch. Continue reading

Meranie objemu kvapalín

Objem je fyzikálna veličina, ktorá je mierou veľkosti priestoru. Značka objemu je (z anglického volume).

1 liter je objem zodpovedajúci kocke so stranou 1 dm

Jednotkou objemu je liter, značka l. Jeden liter zodpovedá kocke so stranou 1 dm. Preto platí 1\,l=1\,dm^3.

Slovom: 1 liter zodpovedá objemu 1 decimeter kubický.

Jednotkou objemu je tiež meter kubický. Je to kocka so stranou 1 m. Continue reading

Fyzikálna veličina

Fyzikálna veličina je vlastnosť fyzikálneho objektu alebo fyzikálneho javu, ktorú možno merať.

Aby sme s fyzikálnymi veličinami vedeli počítať a odvodzovať medzi nimi vzťahy a fyzikálne zákony, každá fyzikálna veličina má svoju značku.

Fyzikálne veličiny meriame vo fyzikálnych jednotkách. Napríklad dĺžku v metroch, objem v litroch alebo metroch kubických, hmotnosť v kilogramoch, rýchlosť v metroch za sekundu, … Aj fyzikálne jednotky majú svoje značky.

Mnohé fyzikálne jednotky sú pomenované na počesť vedcov, ktorí sa zaoberali skúmaním javov, ktoré fyzikálna veličina spojená s jednotkou popisuje (sila newton, tlak pascal, elektrický prúd ampér, …).

Zoznam fyzikálnych veličín s ktorými sa oboznámite na základnej škole.

Skupenstvá látok

Každý pozná látku, ktorú nazývame voda. Vyskytuje sa v troch základných formách:

  • ľad
  • voda – vodou obvykle nazývame vodu, ak je v kvapalnom skupenstve, voda je pritom vodou vo všetkých uvedených formách
  • para – alebo vodná para

Štvrtou formou je sneh, čo je zmes ľadu a vzduchu, v ktorej vzduch zaberá väčšinu objemu.

Aj iné látky sa môžu vyskytovať v týchto troch základných formách. Tieto formy nazývame skupenstvá látok:

  • tuhé skupenstvo – tuhá látka
  • kvapalné skupenstvo – kvapalina; kvapalná látka
  • plynné skupenstvo – plyn; plynná látka
  • (plazma) – ionizovaný plyn

Continue reading