október 2019

Kmitavý pohyb

Kmitavý pohyb je pohyb, ktorý sa pravidelne opakuje.

Zariadenia vykonávajúce pravidelne sa opakujúci pohyb:

a) kyvadlo
b) teleso zavesené na pružine
c) tyč upevnená na jednom konci
d) kvapalina v trubici v tvare U
e) hodinový nepokoj
f) struna

Kyvadlo. Rýchlosť, zrýchlenie, uhol výchylky
Pružina

Kmitavý pohyb môže byť:

a) priamočiary
b) krivočiary
c) otáčavý
d) nerovnomerný (nerovnomerný je vždy)

Kmit: periodicky sa opakujúca sa časť kmitavého pohybu

Doba kmitu (perióda): doba, za ktorú sa vykoná jeden kmit. Značka: T

Frekvencia (kmitočet): Počet kmitov za sekundu. Značka: f

Prevod odmocnín na mocniny

Odmocňovanie je opačná operácia k umocňovaniu. \sqrt[n]{a^n}=a.

Opačnou operáciu k sčítaniu je odčítanie a zistili sme, že odčítanie sa dá previesť na sčítanie. K číslu pripočítame záporné číslo:

a-b=a+(-b)

Podobne delenie je opačnou operáciu k násobeniu a zistili sme, že delenie sa dá previesť na násobenie: a:b=a\cdot \dfrac{1}{b}

Analogicky by mohlo platiť, že by sme nejako mohli previesť odmocňovanie na umocňovanie.

Continue reading

Odmocniny

Druhá odmocnina z a je také číslo b pre ktoré platí:

a=b  \cdot b označujeme ho b=  \sqrt a

Odmocňovanie je opačná operácia k umocňovaniu, takže platí:

\sqrt { a^2 }=a

Podobne možno zadefinovať tretiu odmocninu:

Tretia odmocnina z a je také číslo b pre ktoré platí:

a=b  \cdot b \cdot b označujeme ho b=  \sqrt[3]{a}

Všeobecne: n-tá odmocnina z a je také číslo b pre ktoré platí:

a=b^n označujeme ho b=  \sqrt[n]{a}

Platí: \sqrt[n]{a^n}=a

Continue reading

Mocniny čísla desať. Zápis veľmi veľkých a veľmi malých čísel

Mocniny čísla 10:

10^0=1\hspace{15}10^1=10  \hspace{15}     10^2=100  \hspace{15}     10^3=1000  \hspace{15}   10^4=10000

10^ 5=100000   \hspace{15} 10^ 6=1000000

10^{-1}=0,1 \hspace{15} 10^{-2}=0,01 \hspace{15} 10^{-3}=0,001

Počítame v desiatkovej sústave. Čislo 3456 možno zapísať v tvare:

3456=3\cdot 1000+ 4\cdot  100+5 \cdot   10+ 6\cdot   1

Čísla 1, 10, 100, 1000 sú mocniny čísla 10, takže toto číslo môžeme zapísať aj v tvare:

3456=3\cdot 10^3+ 4\cdot  10^2+5 \cdot   10^1+ 6\cdot   10^0

Podobne aj desatinné čísla môžeme zapísať ako súčet mocnín čísla desať:

0,5607=5\cdot 10^{-1}+ 6\cdot 10^{-2} +0 \cdot 10^{-3}+ 7\cdot 10^{-4}

Niekedy spracujeme s veľmi veľkými alebo s veľmi malými číslami. Často je pohodlnejšie takéto čísla zapísať v tvare súčinu nejakého čísla a mocniny desiatky. Napríklad číslo: 1 235 000 000 – jedna miliarda 235 miliónov možno zapísať takto:

123500000=1,235 \cdot 10^{9 }

Alebo číslo 0,000000005627=5,627 \cdot 10^{-9}

Continue reading

Mocniny

Už na základnej škole ste sa stretli s druhou a treťou mocninou a so zovšeobecnením pre umocňovanie na ľubovolné prirodzené číslo.

Druhá mocnina: a^2=a\cdot a

Druhu mocninu ste používali napríklad pri výpočte obsahu štvorca a kruhu a pri Pytagorovej vete.

Obsah štvorca so stranou a: S=a^2

Obsah kruhu s polomerom r: S=\pi r^2

Pytagorova veta: c^2=a^2+b^2

Tretia mocnina: a^3=a\cdot a \cdot a

Tretiu mocninu ste používali napríklad pri výpočte objemu kocky a objemu gule.

Objem kocky so stranou a: V=a^3

Objem gule s polomerom r: V=\dfrac{4}{3}\pi r^3

n-tá mocnina

Zovšeobecnením môžeme zaviesť mocninu na n:

a^n=a_1\cdot a_2\cdot  ... \cdot a_n,\, kde\, a_1=a_2=...=a_n

Súčin n rovnakých činiteľov nazývame n-tá mocnina.

Pravidlá pre počítanie s mocninami

Možno dokázať nasledujúce pravidlá pre počítanie s mocninami:

  1. a^n \cdot a^m= a^{m+n}
  2. a^n : a^m= a^{m-n}
  3. (a^m)^n=a^{m \cdot n}
  4. (a\cdot b)^n=a^n \cdot b^n
  5. \begin{pmatrix}\dfrac{a}{b}\end{pmatrix}^n=\dfrac{a^n}{b^n}

Dôkazy nájdete v tomto článku (zatiaľ nenapísané)

Príklady:

0^n=0, \,ak \, n\,\neq 0

1^n=1

\begin{tabular}[p]{2}  2^2=4 \hspace{15} 2^3=8\\  3^2=9 \hspace{15} 3^3=27\\  4^2=16 \hspace{15} 4^3=64\\ 5^2=25 \hspace{15} 5^3=125\\ 6^2=36 \hspace{15} 6^3=216\\ 7^2=49 \hspace{15} 7^3=343\\ 8^2=64 \hspace{15} 9^3=512\\ 9^2=81 \hspace{15} 9^3=729\\ 10^2=100 \hspace{15} 10^3=1000\\ \end{tabular}

30^2=(3.10)^2=3^2\cdot 10^2=9 \cdot 100=900 Vzorec: (ab)^n=a^n \cdot b^n

Čo je prvá mocnina?

a^{m+1}:a^m=a^{m+1-m}=a^1=a

Použili sme vzorec pre delenie mocnín s rovnakým základom a^m:a^n=a^{m-n} a skutočnosť, že v čitateľovi sa a nachádza o jeden raz častejšie než v menovateľovi, takže po vykrátení nám zostane len a.

Čo je nultá mocnina?

a^n:a^n=a^{n-n}=a^0=1, a\neq0

Znova sme použili vzorec a^m:a^n=a^{m-n} a skutočnnosť, že podiel dvoch rovnakých čísel je 1.

Čo sú záporne celé mocniny?

a^0:a^n=a^{0-n}=a^{-n}=\dfrac{1}{a^n}, a\neq 0

Príklady:

2^{-1}=\dfrac{1}{2}=0,5

2^{-2}=\dfrac{1}{2^2}=\dfrac{1}{4}=0,25

\left( \dfrac{2}{3} \right) ^{-2}=\dfrac{1}{(\frac{2}{3})^2}=\dfrac{3^2}{2^2}=\dfrac{9}{4}=2,25

Číselné množiny

Prirodzené čísla: Čísla, ktoré označujú počet alebo poradie nazývame prirodzené čísla. Množinu prirodzených čísel označujeme písmenom N.

Podľa tejto definície je aj nula prirodzené číslo, niektoré matematické disciplíny nulu za prirodzené číslo nepovažujú.

Celé čísla: Celé čísla sú zjednotením množiny prirodzených čísel a čísel k nim opačných. Opačné číslo k číslu a je -a. Súčet opačných čísel je nula. Množinu celých čísel označujeme písmenom Z.

Racionálne čísla: Racionálne čísla sú čísla, ktoré možno vyjadriť v tvare zlomku: \dfrac{a}{b}\, kde\, a,b\in Z \, b\neq0. Racionálne čísla označujeme písmenom Q.

Reálne čísla: Reálne čísla sú čísla, ktoré možno zobraziť na číselnej osi. Reálne čísla sú dĺžky všetkých úsečiek. Reálne čísla označujeme písmenom R.
Iracionálne čísla: Reálne čísla, ktoré nie sú racionálne nazývame iracionálne čísla. Nedajú sa vyjadriť v tvare zlomku dvoch celých čísel.

Pre horeuvedené číselné množiny platí:

N\subset Z \subset Q \subset R

Množiny a operácie s množinami

Množina je súbor objektov o ktorých vieme rozhodnúť, či do množiny patria.
Množiny obvykle označujeme veľkými písmenami.

Prvok množiny: Objekt, ktorý do množiny patrí, nazývame prvok množiny.

Prvky množiny obvykle označujeme malými písmenami.

Výraz p\in A čítame ako p je prvkom A.

Výraz p\notin A čítame ako p nie je prvkom A.

Podmnožina: Ak pre každý prvok množiny A platí, že je prvkom množiny B množina A je podmnožinou B

Výraz A\subseteq B čítame ako A je podmnožinou B.

Vlastná podmnožina: Ak existuje aspoň jeden prvok množiny B, ktorý nie je prvkom A a A je podmnožinou B, potom A je vlastnou podmnožinou B.

Značíme výrazom: A\subset B

Grafické vyjadrenie podmnožiny

B je podmnožina A
A je nadmnožina B

Príklady množín a ich podmnožín:

  • množina cicavcov je podmnožinou množiny zvierat
  • množina zvierat je podmnožinou množiny živočíchov
  • množnina párnych čísel je podmnožinou celých čísel
  • množina dravcov nie je podmnožinou množiny cicavcov – existujú aj dravé vtáky a dravé ryby
  • množina žiakov triedy je podmnožinou žiakov školy

Nadmnožina: Ak množina A obsahuje všetky prvky množiny B, množinu A nazývame nadmnožina množiny B.

Prázdna množina: Množina, ktorá nemá prvky sa nazýva prázdna množina.

Značíme buď { } alebo \emptyset

Množinu môžeme určiť troma spôsobmi:

  • vymenovaním prvkov
  • uvedením vlastností, ktoré majú prvky spĺňať
  • množinovými operáciami

a kombináciou hore uvedených spôsobov.

Operácie s množinami

Zjednotenie množín: Zjednotením množiny A a množiny B je množina všetkých prvkov, ktoré sú prvkami množiny A alebo množiny B.

Značíme: A\cup B

Zjednotenie množín môžeme zapísať v tvare A\cup B= \{\forall p, \, p\in A \, \lor\, p \in B\}

Poznámka: \lor je logická spojka alebo.

Graficky možno zjednotenie vyjadriť pomocou Vennovho diagramu:

Zjednotenie množín A a B.

Prienik množín: Prienikom množiny A a množiny B je množina všetkých prvkov, ktoré sú prvkami množiny A a množiny B.

Značíme: A\cap B

Prienik množín môžeme zapísať v tvare: A\cap B= \{\forall p, \, p\in A \, \land\, p \in B\}

Poznámnka: \land je logická spojka a.

Grafické vyjadrenie prieniku množín Vennovym diagramom

Prienik množín A a B

Rozdiel množín: Rozdiel množín A a B je množina všetkých prvkov, ktoré patria do A a nepatria do B.

x \in A - B \Leftrightarrow (x \in A \land x \notin B)

Vennov diagram rozdielu množín

Rozdiel množín A a B

Zdroje

Obrázky sú prevzaté z wikipédie.

https://sk.wikipedia.org/wiki/Rozdiel_mno%C5%BE%C3%ADn

https://sk.wikipedia.org/wiki/Prienik_(matematika)

https://sk.wikipedia.org/wiki/Zjednotenie_(matematika)

Počítanie so zlomkami

Zlomok je číslo v tvare \hspace{10}\dfrac{a}{b}\hspace{10} a,b \in Z \hspace{15}  b\neq 0

Číslo nad zlomkovou čiarou nazývame čitateľ, číslo pod zlomkovou čiarou nazývame menovateľ.

Krátenie zlomku

Ak čitateľa i menovateľa predelíme tým istým číslom rôznym od nuly, hodnota zlomku sa nezmení. Nazývame to krátenie zlomku.

Rozšírenie zlomku

Ak čítateľa i menovateľa vynásobíme tým istým číslom rôznym od nuly, hodnota zlomku sa nezmení. Nazývame to rozšírenie zlomku.

Sčítanie zlomkov

a) s rovnakými menovateľmi

Zlomky s rovnakým menovateľom sčítame tak, že menovateľa opíšeme a čitateľov sčítame

\dfrac{a}{c}+\dfrac{b}{c}=\dfrac{a+b}{c}

b) s rôznymi menovateľmi

Zlomky prevedieme na rovnakého menovateľa a potom postupujeme ako v prípade a)

\dfrac{a}{b}+\dfrac{c}{d}= \dfrac{a\cdot d}{b \cdot d} +\dfrac{c\cdot b}{d\cdot b}=\dfrac{a \cdot d+c \cdot b}{b \cdot d}

Prvý zlomok sme rozšírili číslom d a druhý číslom b. Najjednoduchšie je previesť menovateľov na ich najmenší spoločný násobok, ale aj hore uvedený spôsob vedie k správnemu výsledku.

Odčítanie zlomkov

a) s rovnakými menovateľmi

Zlomky s rovnakým menovateľom odčítame tak, že menovateľa opíšeme a od prvého čitateľa odpočítame druhého čitateľa

\dfrac{a}{c}-\dfrac{b}{c}=\dfrac{a-b}{c}

b) s rôznymi menovateľmi

Zlomky prevedieme na rovnakého menovateľa a potom postupujeme ako v prípade a)

\dfrac{a}{b}-\dfrac{c}{d}= \dfrac{a\cdot d}{b \cdot d} -\dfrac{c\cdot b}{d\cdot b}=\dfrac{a \cdot d-c \cdot b}{b \cdot d}

Násobenie zlomkov

Zlomky násobime tak, že čitateľa vynásobime čitateľom a menovateľa menovateľom.

\dfrac{a}{b}\cdot \dfrac{c}{d}=\dfrac{a\cdot c}{b \cdot d}

Delenie zlomkov

Zlomky delíme tak, že druhý zlomok prevrátime (čitateľ sa stane menovateľom a naopak) a tieto zlomky vynásobime.

\dfrac{a}{b}:\dfrac{c}{d}= \dfrac{a}{b} \cdot \dfrac{d}{c} = \dfrac{a \cdot d}{b \cdot c}

Ak budeme mať zložený zlomok, tak ide vlastne tiež o delenie zlomku zlomkom a postupujeme rovnako alebo rovno výnasobíme vonkajšie hodnoty a zapíšeme do čitateľa a vnútorné hodnoty a zapíšeme do menovateľa.

\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=  \dfrac{a \cdot d}{b \cdot c}

Príklady

\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{1\cdot 3}{2\cdot 3}+ \dfrac{1\cdot 2}{3\cdot 2} =\dfrac{3+2}{6}=\dfrac{5}{6}

\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1\cdot 3}{2\cdot 3}- \dfrac{1\cdot 2}{3\cdot 2} =\dfrac{3-2}{6}=\dfrac{1}{6}

\dfrac{1}{2}\cdot \dfrac{1}{3}=\dfrac{1 \cdot 1}{2 \cdot 3}=\dfrac{1}{6}

\dfrac{1}{2}: \dfrac{1}{3}= \dfrac{1}{2}\cdot \dfrac{3}{1}=\dfrac{3}{2}=1,5

Poznámka: Výsledok sme mohli nechať aj v tvare \dfrac{3}{2}

\dfrac{2}{3}\cdot \left( \dfrac{2}{5}+\dfrac{3}{7}\right)= \dfrac{2}{3}\cdot \dfrac{2 \cdot 7+3\cdot 5 }{5\cdot 7 }= \dfrac{2}{3}\cdot \dfrac{29}{35}=\dfrac{58}{105}

Čo je väčšie? \dfrac{1}{3} alebo \dfrac{2}{7}

Riešenie 1: Prevedieme na spoločného menovateľa a zlomok, ktorý bude mať väčšieho čitateľa bude väčší.

Spoločný menovateľ je 21. \dfrac{1}{3}=\dfrac{7}{21}\hspace{15} \dfrac{2}{7}=\dfrac{6}{21} teda \dfrac{1}{3}>\dfrac{2}{7}

Riešenie 2: Zlomky rozšírime tak, že čitatelia budú rovnakí. Zlomok, ktorý bude mať menšieho menovateľa bude väčší.

\dfrac{1}{3}=\dfrac{2}{6} teda \dfrac{1}{3}>\dfrac{2}{7}

Poznámka: Výhodou prvého riešenia je, že vieme o koľko je 1/3 väčšia než 2/7, výhodou druhého je, že sme to vypočítali rýchlejšie.

Zaokrúhľovanie

Niekedy stačí, ak výsledok výpočtu zobrazíme na istý počet miest. Výsledok môžeme zaokrúhliť.

Pravidlá zaokrúhľovania:

  1. Zaokrúhlenie nadol: Ak prvá číslica, ktorú máme zaokrúhliť je menšia ako 5, predchádzajúce číslice opíšeme a zaokrúhlenú číslicu a všetky číslice za ňou vynecháme.
  2. Zaokrúhlenie nahor: Ak prvá číslica, ktorú máme zaokrúhliť je väčšia ako 4, k predchádzajúcej číslici pripočítame jednotku a zaokrúhlenú číslicu a číslice za ňou vynecháme.

Znakom zaokrúhlenia je znak rovná sa a nad ním krúžok alebo bodka: \doteq

Continue reading