Odpor žiarovky

Na hodine som previedol sadu meraní elektrického obvodu, v ktorom bola žiarovka. Postupne som zvyšoval napätie zdroja a meral prúd prechádzajúci obvodom. Namerané hodnoty iba čiastočne zodpovedali grafu, ktorý je v učebnici na strane 54. Samotné vodiče a merací prístroj totiž mali nejaký odpor, ktorý vzhľadom k odporu žiarovky nebol zanedbateľný. Po skončení hodiny som preto urobil druhú sadu meraní.

Schéma zapojenia pri druhej sade meraní. V prvej sade akoby bol voltmeter pripojený na svorky zdroja.

Výsledky týchto meraní sú v nasledujúcej tabuľke, navyše je v nej aj vypočítaný odpor žiarovky pri danom napätí.

Závislosť prúdu prechádzajúceho žiarovkou od napätia
Graf závislosti odporu žiarovky od napätia
Graf závislosti prúdu od napätia pre žiarovku

Z nameraných hodnôt a grafov môžeme usúdiť, že čím je väčšie napätie tým má vlákno žiarovky väčší odpor. V skutočnosti je to tak, že s rastúcim napätím a prúdom rastie teplota vlákna žiarovky a s rastúcou teplotou vlákna žiarovky rastie jeho elektrický odpor. Ak by sme dokázali vlákno žiarovky chladiť, tak jej odpor by sa nemenil.

Uvedené platí pre kovové vodiče. Keď kovový vodič nahradíme polovodičom, tak zistíme, že s rastúcou teplotou odpor vodiča klesá. To sa využíva v elektrických teplomeroch. alebo pri regulácii teploty. Ak teplota stúpne nad nejakú hodnotu, zapne sa chladenie, ak klesne pod nejakú teplotu, chladenie sa vypne, prípadne sa zapne kúrenie.

Priorita matematických operácií (Čo má prednosť?)

Tak ako v obyčajnom živote slušnosť káže dať prednosť pri vchádzaní do miestnosti alebo pri vychádzaní:

  • žiak – učiteľovi
  • mladší – staršiemu
  • muž – žene
  • podriadený – nadriadenému

aj pri počítaní matematických príkladov majú niektoré matematické operácie prednosť pred inými matematickými operáciami (majú prioritu).

Pokiaľ sa v bežnom živote stretnú pri dverách osoby s rovnakou hierarchiou, tak má prednosť tá osoba, ktorá prišla prvá. V matematike podobne počítame zľava doprava, ale ak má operácia vpravo vyššiu prioritu (má prednosť), tak najprv vypočítame operáciu s vyššou prioritou.

Násobenie a delenie majú rovnakú prioritu, ale majú vyššiu prioritu než sčítanie a odčítanie. Sčítanie a odčítanie majú rovnakú prioritu.

7+8:2=7+4=11

Ak by sme chceli, aby sa najprv sčítalo, musíme použiť zátvorky. Ak sú v príklade zátvorky, najprv vypočítame operácie v zátvorkách a až potom to čo je mimo zátvoriek.

(7+8):2=15:2=7\, zv. 1

Ak už poznáte desatinné čísla, tak výsledok by bol:

(7+8):2=15:2=7,5

Pozor!: Ak budete počítať na kalkulačke, tak niektoré kalkulačky „poznajú“ prioritu matematických operácií, ale niektoré ju „nepoznajú“. Preto môžete na kalkulačke dostať nesprávny výsledok. Preto by ste si pri počítaní na kalkulačke mali zapísať medzivýsledok (medzivýsledky).

Elektrická vodivosť

Meraním sme zistili, že elektrický odpor vodiča závisí od druhu materiálu, z ktorého je vodič vyrobený, od dĺžky vodiča a od plochy prierezu vodiča.

Najprv som meral elektrický prúd pre oceľový drôt s priemerom 0,2 mm pri konštantnom napätí, pre rôzne dlhé drôty. Zistili sme, že s rastúcou dĺžkou drôtu elektrický prúd klesá, teda elektrický odpor rastie.

Potom som odmeral prechádzajúci prúd pre 1 meter dlhý medený drôt s rovnakým priemerom a nakoniec som ho odmeral pre konštantán. Zistili sme, že najväčší odpor mal drôt z konštantánu a najmenší bol pre medený drôt. Potom som ešte odmeral elektrický odpor 20 cm drôtu z konštantánu, ktorý mal priemer 0,14 mm. Zistili sme, že drôt s menším priemerom teda menším obsahom prierezu mal väčší odpor. Z uvedených meraní možno odvodiť vzťah:

R=k\cdot \dfrac{l}{S}

Konštanta k je materiálová konštanta, nazývame ju rezistivita alebo tiež merný elektrický odpor. Značka pre rezistivitu je \rho.

\rho=R\cdot \dfrac{S}{l}

Merný elektrický odpor je odpor vodiča, ktorý by bol dlhý jeden meter a obsah kolmého prierezu vodiča by bol jeden meter štvorcový.

Schopnosť vodiča viesť elektrický prúd nazývame elektrická vodivosť. Dobrý vodič vedie elektrický prúd dobre, zlý zle. Ak mám dva vodiče a jedným pri tom istom napätí preteká väčší elektrický prúd, znamená to, že lepšie vedie elektrický prúd, má väčšiu elektrickú vodivosť.

Elektrická vodivosť je fyzikálna veličina, ktorá vyjadruje schopnosť vodiča viesť elektrický prúd. Je prevrátenou hodnotou elektrického odporu.

Značka elektrickej vodivosti je G.

G=\dfrac{I}{U}
Jednotkou elektrickej vodivosti je siemens, značka S.

1\,S=\dfrac{1}{\Omega}=1\,\Omega^{-1}

Čím väčšia je vodivosť, tým väčší elektrický prúd prechádza vodičom pri rovnakom napätí. Dobrý vodič má vysokú hodnotu vodivosti, zlý vodič má nízku hodnotu vodivosti.

Konštantán je zliatina medi (55%) a niklu (45%). Nazýva sa tak preto, lebo má merný elektrický odpor takmer rovnaký (konštantný) pri rôznych teplotách. Pre iné kovy s rastúcou teplotou merný elektrický odpor rastie.

Zdroje

Uhol

V aplikácii Microsoft Team v skupine Matematika 6 máte uloženú prezentáciu, ktorú som vám premietal počas online hodiny.

Uhol je časť roviny ohraničená dvoma polpriamkami, ktoré majú spoločný počiatok.

Polpriamky sa nazývajú ramená uhla.

Vrchol uhla je spoločný počiatok polpriamok.

Označenie uhla

  1. Pomocou troch bodov a schematickej značky uhla, kde bod B (bod v strede) je vrcholom uhla a polpriamky BA a BC sú jeho ramená:
    \sphericalangle ABC
  2. Pomocou malých písmen gréckej abecedy:
    alfa – \alpha beta – \beta gama – \gamma delta – \delta

Veľkosť uhla

Celý kruh má 360 stupňov. Jeden stupeň je potom jedna tristošesdesiatina kruhu. Ak picu rozrežeme na 6 rovnakých dielov, tak rovné okraje dielu, ktorý dostaneme, budú mať 60 stupňov. Značka pre stupeň je ^\circ.

Stupne sa ďalej delia na minúty, podobne ako hodina má 60 minút, aj stupeň má 60 minút, nazývame ju uhlová minúta, alebo len minúta – z kontextu (situačných okolností) by malo byť zrejmé, či hovoríme o minúte ako jednotke času alebo o uhlovej minúte. Ak však napríklad na fyzike budem skúmať nejaký dej, kde sa uhol mení s časom, musíme explicitne (priamo, otvorene) povedať uhlová minúta. Uhlové minúty sa ďalej delia na uhlové sekundy. Jedna uhlová minúta má 60 uhlových sekúnd.

Zememerač a jeho traja pomocníci

Značka pre uhlovú minútu je ‚ a značka pre uhlovú sekundu je “.  My na hodinách geometrie s minútami a sekundami pracovať nebudeme pri zostrojovaní uhlov, lebo nemáme také presné uhlomery, budeme s nimi nanajvýš počítať. V astronómii a v zememeračstve sa však s uhlovými minútami a sekundami pracuje. 

Druhy uhlov

Podľa veľkosti delíme uhly na:

  • nulový uhol – veľkosť uhla je 0^\circ
  • ostrý uhol – veľkosť uhla je viac ako 0^\circ a menej ako 90^\circ
  • tupý uhol – veľkosť uhla je viac než 90^\circ a menej než 180^\circ
  • priamy uhol – veľkosť uhla je 180^\circ
  • vypuklý uhol – veľkosť uhla je väčšia ako 180^\circ a menšia ako 360^\circ
  • plný uhol – veľkosť uhla je rovná 360^\circ

Elektrický odpor pri sériovom a paralelnom zapojení

Tu pribudne video, kde budú merania prúdu prechádzajúceho obvodom, ak budeme mať dva rezistory zapojené samostatne a potom za sebou a vedľa seba. Tiež tu pribudne tabuľka nameraných hodnôt prúdu a napätia a z nich vypočítaných hodnôt elektrického odporu.

Z meraní vyplynú nasledujúce závery:

Sériové zapojenie

Keď zapojíme dva rezistory s odpormi R_1, R_2 do série (za sebou), výsledný odpor je súčtom jednotlivých odporov. R=R_1+R_2.

Paralelné zapojenie

Keď ich zapojíme paralelne (vedľa seba ), výsledný prúd je súčtom prúdov, ktoré by pretekali v samostatných obvodoch. I=I_1+I_2

Prúd možno vyjadriť ako podiel napätia a odporu: \cfrac{U}{R}=\cfrac{U}{R_1}+\cfrac{U}{R_2}

po predelení ľavej a pravej strany U, dostaneme: \cfrac{1}{R}=\cfrac{1}{R_1}+\cfrac{1}{R_2}

Vynásobme obe strany R.R_1.R_2. Dostaneme: R_1.R_2=R.R_2+R.R_1

to možno upraviť na tvar: R_1.R_2=R.(R_2+R_1) po predelení R_1+R_2 dostaneme:

R=\cfrac{R_1.R_2}{R_1+R_2} \,(4)

Aký bude výsledný odpor, ak zapojíme paralerne dva rovnaké odpory?

R_1=R_2 po dosadení do vzorca (4) dostaneme R=\cfrac{R_1.R_1}{R_1+R_1}

R=\cfrac{1}{2}.R_1

Výsledný odpor bude polovičný, než je odpor dvoch rovnakých rezistorov.

Prečo sa žiarovka obvykle „prepáli“ pri zapnutí a výnimočne počas svietenia?

Odpor kovového vodiča rastie s rastúcou teplotou. Keď je vlákno žiarovky studené, má výrazne nižší odpor, než keď je žeravé. Začne ním pretekať výrazne väčší prúd, než keď je žeravé, tento prúd vlákno prudko ohreje, pričom dochádza k mechanickému pnutiu, ktoré vlákno môže narušiť. Tiež sa vlákno lokálne môže zahriať na vyššiu teplotu, než je teplota topenia a vlákno „prepáli“.

Poznámka: Prepáli som dal do úvodzoviek, pretože tu nedochádza k horeniu, ale buď sa vlákno pretrhne alebo sa roztaví. Hovorovo však hovoríme, že sa žiarovka, poistka, … prepálila.

Geometrická optika

Geometrická optika alebo optika lúčov je oblasť fyziky, ktorá popisuje optické javy geometricky, zanedbávajúc vlnovú podstatu svetla.

Je založená na nasledujúcich princípoch:

  • princíp priamočiareho šírenia svetla
  • princíp vzájomnej nezávislosti lúčov
  • princíp zameniteľnosti chodu lúčov
  • zákon odrazu
  • zákon lomu

Princíp priamočiareho šírenia svetla

Svetlo sa v homogénnom (rovnorodom) prostredí šíri priamočiaro.
Ak máme veľmi malý zdroj svetla (bodový zdroj svetla) uzavretý v nepriehľadnej schránke, na ktorej je kruhový otvor, svetlo uniká iba týmto otvorom a vytvára svetelný kužeľ, ako je na obrázku hore, tento svetelný kužeľ môžeme vidieť, pokiaľ sú vo vzduchu drobné prachové častice. Ak do kužeľa vložíme tienidlo, kolmo na os kužeľa, zobrazí sa na tienidle kruh, ten je tým väčší, čím sme ďalej od zdroja svetla a čím je otvor na schránke väčší.

Princíp nezávislosti lúčov

Svetelné lúče prechádzajú prostredím tak, akoby ostatné lúče neexistovali.

Princíp zámeny chodu lúčov

Ak sa svetelný lúč šíri z bodu A do bodu B, potom sa môže šíriť z bodu B do bodu A a to po tej istej dráhe.

Zákon odrazu

Uhol odrazu sa rovná uhlu dopadu.

Zákon lomu

Keď svetelný lúč prechádza z jedného prostredia do druhého, tak sa lúč zlomí podľa nasledujúceho vzťahu:
\dfrac{sin, \alpha _1}{sin, \alpha_2}=\dfrac{sin, v_1}{v_2}=\dfrac{n _2}{n_1}

Kde \alpha _1 je uhol dopadu, \alpha _2 je uhol lomu, v_1 je rýchlosť svetla v prvom prostredí, v_2 rýchlosť svetla v druhom prostredí a n_1, n_2 sú relatívne indexy lomu prvého a druhého prostredia.

Znamienková konvencia

  • Predmetová vzdialenosť je kladná pred šošovkou, záporná za šošovkou.

Prvočísla a zložené čísla

Číslo p je deliteľom čísla n, ak číslo n možno zapísať, ako súčin čísla p a nejakého čísla q: n=p \cdot q

Aj číslo q je deliteľom čísla n, ak je q>0.

Možno to vyjadriť aj inak: Číslo p je deliteľom čísla n , ak ho delí bezo zvyšku.

Rozpíšme všetky možné vyjadrenia čísel od 1 do 20, ako súčinu dvoch čísel:

\textcolor{blue}{1=1 \cdot 1}\textcolor{green}{11=1 \cdot 11}
\textcolor{green}{2=1 \cdot 2}12=1 \cdot 12=2 \cdot 6
\textcolor{green}{3=1 \cdot 3}\textcolor{green}{13=1 \cdot 13}
4=1 \cdot 4=2 \cdot 214=1 \cdot 14=2 \cdot 7
\textcolor{green}{5=1 \cdot 5}15=1 \cdot 15=3 \cdot5
6=1 \cdot 6=2 \cdot 316=1 \cdot 16=2 \cdot 8=4 \cdot 4
\textcolor{green}{7=1 \cdot 7}\textcolor{green}{17=1 \cdot 17}
8= 1\cdot 8=2 \cdot 418=1 \cdot 18=2 \cdot 9=3 \cdot 6
9=1 \cdot 9=3 \cdot 3\textcolor{green}{19=1 \cdot 19}
10=1 \cdot 10=2 \cdot 520=1 \cdot 20=2 \cdot 10=4 \cdot 5

Zelenou farbou som označil čísla, ktoré majú iba dva delitele. Čiernou farbou sú napísané čísla, ktoré majú viac než dva delitele. Modrou farbou som označil číslo 1, ktoré má len jedného deliteľa.

Prvočíslo je číslo, ktoré má dva delitele jednotku a samé seba.

Zložené číslo je číslo, ktoré má viac než dva delitele.

Veta: Číslo dva je jediné párne prvočíslo.

Dôkaz: Ak by číslo n bolo párne číslo väčšie ako dva, tak by malo delitele 1 a samé seba a navyše aj číslo 2.

Veta: Každé zložené číslo možno vyjadriť ako súčin prvočísel.

Dôkaz: Ak je n zložené číslo, možno ho vyjadriť ako súčin dvoch čísel väčších ako 1. n=p \cdot q. Tieto čísla sú buď prvočísla, alebo sú to znova zložené čísla. Ak sú to zložené čísla, možno ich vyjadriť ako p=p_1 \cdot p_2 a q=q_1 \cdot q_2. Tieto nové činitele sú aspoň dvakrát menšie, než pôvodné. Po konečnom počte krokov, dospejeme k číslu 2, ktoré je prvočíslom, alebo to už neboli zložené čísla.

Využitie prvočísel

  • V súčasnosti sa prvočísla využívajú hlavne v kryptografii. Kryptografia je veda o šifrovaní a dešifrovaní. Ak máme zložené číslo, ktoré je súčinom dvoch veľmi veľkých prvočísel, dá sa správa zakódovať verejným kľúčom, ale dekódovať sa dá len súkromným kľúčom. Aj veľmi výkonné počítače pri dostatočnej veľkosti prvočísel by pracovali desiatky či stovky rokov, kým by odhalili súkromný kľúč.
  • V informatike sa prvočísla používajú v hashovacích tabuľkách. Je to také ukladanie informácií, aby sme veľmi rýchlo našli informácie v databáze.
  • V matematike možno pomocou prvočísel hľadať dokonalé čísla.
    Dokonalé číslo je číslo, ktorého súčet vlastných deliteľov je rovný dokonalému číslu. Napríklad:
    6 má vlastné delitele 1,2,3 a 6=1+2+3
    28=1,2,4,7,14 a 28=1+2+4+7+14
    Vlastný deliteľ je taký deliteľ, ktorý je menší než číslo ktoré delíme.
    Starí Gréci prikladali dokonalým číslam magické vlastnosti.

Šošovky

Šošovka je homogénne izotropné prostredie, ohraničené dvoma guľovými plochami alebo guľovou plochou a rovinou. Je to predmet z priehľadného materiálu slúžiaci v optike alebo v iných prípadoch na ovplyvnenie šírenia svetla v širšom zmysle, t. j. viditeľného svetla, infračerveného a ultrafialového žiarenia.

Šošovky sú najčastejšie sklenené, ale na ich výrobu sa bežne používajú aj plasty. Materiál šošovky je charakterizovaný indexom lomu, ktorý je vždy väčší ako jedna, a indexom absorpcie, ktorý je pre vlnové dĺžky v rozsahu použiteľnosti šošovky blízky nule. Najjednoduchší opis šírenia lúčov šošovkou poskytuje geometrická optika. Ak je hrúbka šošovky vzhľadom na polomery jej guľových plôch zanedbateľná (d<<r), potom hovoríme, že šošovka je tenká.

Najstaršia zmienka o šošovke pochádza z Aristofanovej divadelnej hry Oblaky, kde vystupovala ako zapaľovacie sklíčko.

Druhy šošoviek

Základné delenie šošoviek vychádza z toho, či šošovka rovnobežné lúče spája alebo rozptyľuje.

  • spojky – lúče spájajú
  • rozptylky – lúče rozptyľujú

Na obrázku v pravo sú rôzne tvary šošoviek. Šošovky 1 až 3 sú spojky, 4 až 5 rozptylky.

Spojka (spojná šošovka, konvexná šošovka)

Spojka je uprostred hrubšia ako na okrajoch a má aspoň jeden vypuklý povrch. Na obrázku v pravo je ukážka, ako prechádzajú vodorovné lúče šošovkou.

Zdroje:

  • Časť textu je prevzatá zo slovenskej wikipédie
  • Obrázky sú prevzaté z wikipédie

Teplo a teplota

V bežnom živote často nerozlišujeme medzi teplom a teplotou. Ak povieš „Je mi teplo.„, ide čiastočne o subjektívny pocit, vedľa sediacemu kamarátovi môže byť zima. Ak povieme vonku je teplo, myslíme tým, že je vonku vysoká teplota.

Vo fyzike striktne rozlišujeme medzi teplom a teplotou.

Teplota je fyzikálna veličina, ktorá súvisí s vnútornou energiou látky.

Dve telesá majú rovnakú teplotu, ak priemerná kinetická energia ich častíc je rovnaká. O teplote má zmysel hovoriť len u makroskopických telies. Hovoriť o teplote jednotlivej častice nemá zmysel.

Základnou jednotkou teploty je Kelvin, značka K. Vedľajšou jednotkou je stupeň celzia, značka ^0C. V bežnom živote používame stupne celzia.

Continue reading

Elektrický prúd

Elektrický prúd je fyzikálna veličina. Je to usporiadaný pohyb elektrického náboja.

Značka elektrického prúdu je I.

Jednotkou elektrického prúdu je ampér, značka A.

Ak vodičom prechádza elektrický prúd jeden ampér, preteká ním náboj jeden coulomb za sekundu.

1A = 1C/s

Voľné elektróny vytvárajú v kovovom vodiči elektrický oblak. Voľné elektróny sa vo vodiči pohybujú chaoticky všetkými smermi. Hoci sa elektrický náboj pohybuje, zo štatistického hľadiska sa rovnaké množstvo elektrického náboja pohybuje jedným i druhým smerom a teda nejde o usporiadaný pohyb elektrónov a nejedná sa o elektrický prúd.

Ak konce vodiča pripojíme k zdroju elektrického napätia, elektróny sa začnú pohybovať ku kladnému pólu zdroja. Naďalej budú vykonávať aj chaotický tepelný pohyb, ale vo vodiči bude aj usporiadaná zložka tohto pohybu. Vznikne usporiadaný pohyb elektrického náboja, ktorý nazývame elektrický prúd. Na elektróny pôsobí príťažlivá sila, pohybujú sa zrýchlene, ale často narazia do atómov vodiča a ich pohyb sa spomalí. Vodičom bude prechádzať prúd stálej veľkosti.

Základné pojmy z optiky a základné vlastnosti svetla

Skladanie farieb cez farebné filtre

Viditeľné svetlo alebo len svetlo je elektromagnetické vlnenie s vlnovou dĺžkou približne 390 nm až 760 nm (nanometer je jedna miliardtina metra). Vnímame ho zrakom, pričom farba závisí od vlnovej dĺžky svetla (červená farba má najväčšiu a modrá najmenšiu vlnovú). Viditeľné svetlo tvorí 48% slnečného žiarenia. 

Oblasť fyziky, ktorá sa zaoberá viditeľným svetlom, sa nazýva optika.

Continue reading

Ovládanie korytnačky cez príkazový riadok

Po kliknutí na ikonu zelenej korytnačky sa spustí prostredie Imagine.

Hore sa zobrazí menu: Súbor Úpravy Ukázať Nastavenia Stránka Pomocník

Pod menu sú rôzne tlačítka. Ďalej nasleduje pracovná plocha, po ktorej sa pohybuje korytnačka (korytnačky).

Potom je pás, v ktorom je zoznam príkazov, ktoré sme korytnačke zadali a celkom dole je príkazový riadok, do ktorého zadávame príkazy korytnačke.

V tomto článku nájdete zoznam príkazov jazyka Imagine.

Continue reading

Sústava troch a viac lineárnych rovníc

Ak máme tri neznáme a všeobecne n neznámych, aby bolo riešenie jednoznačné, potrebujeme aspoň tri rovnice a všeobecne n rovníc. Ak máme tri neznáme, v matematike ich obvykle označíme písmenami x, y, z. Ak je neznámych viac, označujeme ich pomocou dolného indexu x_1, x_2, ...\, x_n. Sústavu troch lineárnych rovníc riešime podobne, ako sústavu dvoch lineárnych rovníc substitučnou metódou.

Continue reading

Sústava dvoch lineárnych rovníc o dvoch neznámych

Kedysi ste sa naučili riešiť lineárnu rovnicu s jednou neznámou. V živote či vo vede sa stretávame aj so zložitejšími problémami, keď neznáme môžu byť dve a viac. V tomto článku si ukážeme, ako možno riešiť sústavu dvoch lineárnych rovníc o dvoch neznámych. Prvú neznámu obvykle označíme x, druhú y, ale inak na označení nezáleží (vo fyzike ich napríklad označíme značkami fyzikálnych veličín).

Continue reading

Exponenciálne rovnice

Video s touto témou

Exponenciálna funkcia so základom väčším ako 1 je rastúca a so základom menším ako 1 a väčším ako 0 je klesajúca. To znamená:

Ak\, a^x=a^y, \, potom\, x=y. (1)

alebo

Ak\, a^x\ne a^y, \, potom\, x\ne y. (2)

Túto vlastnosť využijeme pri riešení exponenciálnych rovníc.

Príklad 1: Vyriešte rovnicu \dfrac{1}{5^{2x-4}}=125

Pravú stranu upravíme na mocninu 5: 125=5^3

Pre ľavú stranu využijeme vzťah a^{-n}=\dfrac{1}{a^n}.

Dostaneme: 5^{4-2x}=5^3

Teraz využijeme vzťah (1). Riešenie exponenciálnej rovnice sa zmení na riešenie lineárnej rovnice:

4-2x=3ň, /-3

1-2x=0\, /+2x

1=2x\, / :2

x=0,5

Skúška:

L: \dfrac{1}{5^{4-2x}}=\dfrac{1}{5^{4-2\cdot 0,5}}=\dfrac{1}{5^{-3}}=5^3=125

\underline{ L=P}

Skúška správnosti vyšla. Riešením rovnice je x=0,5.

Zhrnutie riešenia: Ak na ľavej aj pravej strane máme mocniny s rovnakým základom, riešime rovnicu, v ktorej sa majú rovnať exponenty. Ak nemáme rovnaký základ, nájdeme spoločný základ mocniny. V tomto príklade spoločným základom bolo číslo 5.

Príklad 2: Vyriešte 4^{x-2}=0,125

Ako vyjadriť 0,125, ako mocninu nejakého čísla? Čo je spoločným základom? Môže to byť 4? 4^{-1}=\dfrac{1}{4}=0,25

4^{-2}=\dfrac{1}{4^2}=\dfrac{1}{16}=0,0625

Zistili sme, že 4 to nie je. Číslo 4 je mocninou dvojky. 2^{-3}=\dfrac{1}{8}=0,125

Pôvodnú rovnicu upravíme do tvaru:

2^{2^{x-2}}=2^{-3}

Použijeme vzťah a^n^m=a^{n\cdot m} a dostaneme:

2^{2\cdot(x-2)=2^{-3}

Teraz stačí vyriešiť lineárnu rovnicu, v ktorej sa exponenty majú rovnať.

2\cdot{x-2}=-3

2x-4=-3 // +4

2x=1 // :2

x=0,5

Úlohy na riešenie:

  1. Tu pribudne niekoľko úloh

Nepriama úmernosť

Jeden robotník vykope 20 metrový kanál za 8 hodín. Za koľko hodín ho vykopú dvaja robotníci, ak sú rovnako výkonní?

Dvaja robotníci kanál vykopú dvakrát rýchlejšie, takže ho vykopú za 4 hodiny.

Auto išlo priemernou rýchlosťou 60 km za hodinu, z obce Pršany do obce Dažďany došlo za 1 hodinu. Na bicykli cyklista dosahuje na tej istej trati rýchlosť 20 km za hodinu, ako dlho mu cesta potrvá?

Cyklista ide trikrát pomalšie, cesta mu bude trvať trikrát tak dlho. Trasu prejde za tri hodiny.

Oba vyššie uvedené príklady boli príklady nepriamej úmernosti.

Nepriama úmernosť medzi dvoma veličinami je, ak vzťah medzi nimi možno vyjadriť vzorcom: y=\dfrac{k}{x}, kde k je konštanta úmernosti a k>0, \, k \in R

Continue reading

Priama úmernosť

Keď nakupujem rožky v obchode a jeden rožok stojí 8 centov, výsledná cena, ktorú zaplatím sa dá vyjadriť vzťahom: c=8 \cdot r, kde c je cena a r je počet rožkov.

Rožky012345678910
Cena
v centoch
08162432404856647280

Ak idem na bicykli konštantnou rýchlosťou 16 km za hodinu, dráha ktorú prejdem za nejaký čas sa dá vyjadriť vzťahom s=16 \cdot  t, kde s je dráha, a t je čas.

Čas0 min15 min30 min1 hod2 hod3 hod
Dráha 0 km4 km8 km16 km32 km48 km

Poznámka: 15 minút je štvrť hodiny.

Hore uvedené vzťahy boli príklady priamej úmernosti.

Priama úmernosť medzi dvoma veličinami je, ak hodnotu závislej premennej od nezávislej premennej možno vyjadriť vzorcom v tvare: y=k \cdot x, kde k>0, \, k \in R. Konštanta priamej úmernosti k, je kladné reálne číslo.

Continue reading

Základné pojmy pravdepodobnosti

Majme stanovený systém podmienok (napr. máme pravidelnú hraciu kocku, ktorej steny sú označené číslami 1, 2, . . . , 6). Proces (dej), ktorý môže nastať pri realizácii týchto podmienok (napr. hod hracou kockou) nazývame pokus. Vyžadujeme, aby každý pokus mal vlastnosť hromadnosti, t. j. aby sme ho mohli teoreticky ľubovoľne krát opakovať. Výsledok tohto procesu nie je jednoznačný, je náhodný, nazývame ho náhodným javom alebo náhodnou udalosťou (napr. padnutie šestky). Náhodný jav je výsledok pokusu. Množinu všetkých navzájom sa vylučujúcich výsledkov pokusu označujme gréckym písmenom \Omega. Jej prvky nazývame elementárne udalosti a označujeme ich písmenom e_i , t.j. \Omega = \{e_1, e_2, ... e_n\}. Podmnožiny množiny všetkých možných výsledkov pokusu nazývame náhodnými udalosťami.

Continue reading

Náhoda a pravdepodobnosť

Niektoré javy sú také, že vieme dopredu s absolútnou istotou povedať, čo sa stane za daných okolností:

  • ak zdvihneme teleso a pustíme ho, vieme že spadne na zem
  • ak priblížime k sebe dva magnety, začnú sa priťahovať alebo odpudzovať, podľa toho, ktoré póly magnetov sú bližšie k sebe
  • ak voda dosiahne 100 stupňov celzia pri normálnom tlaku, začne vrieť
  • ak teplota klesne pod 0 stupňov celzia pri normálnom tlaku, zmrzne

Iné javy sú také, že nevieme s istotou povedať čo nastane, ale vieme že nastane niektorá z možností:

  • hodíme kocku, padne jedno z čísel 1, 2, 3, 4, 5, 6, ale dopredu nevieme, ktoré z nich to bude
  • hodíme mincu, padne rub alebo líc
  • meteorológovia namerajú údaje v atmosfére a síce predpovedia, aké bude počasie, ale čas od času im predpoveď nevyjde
  • voda síce pri 100 stupňoch celzia začne vrieť, ale nevieme dopredu povedať, či konkrétna molekula vody bude ešte v hrnci o 5 sekúnd

Prvú triedu nazývame deterministické javy. Druhú triedu javov nazývame náhodné javy.

Continue reading

Precenenie tovaru

V praxi neraz budete tovar preceňovať. Buď ho o nejaké percentá zdražíte alebo zlacníte, alebo zmenu vypočítate pripočítaním alebo odpočítaním nejakej čiastky a spätne budete potrebovať zistiť o koľko percent ste cenu zvýšili alebo znížili.

Zlacnenie: Ak tovar chceme zlacniť o p%, novú cenu vypočítame zo vzorca: c_n=(1-p/100)\cdot c_p kde c_n je nová cena a c_p je pôvodná cena.

Príklad: Tovar stoji 70 euro, zlacníme ho 20%. Aká bude nová cena?
c_n=(1-20/100)\cdot 70=0,8\cdot 70=56
Nová cena bude 56 euro.

Zdraženie: Ak tovar chceme zdražiť o p%, novú cenu vypočítame zo vzorca c_n=(1+p/100)\cdot c_p kde c_n je nová cena a c_p je pôvodná cena.

Continue reading

Goniometrické funkcie

Ešte na základnej škole ste sa učili o podobnosti trojuholníkov.

Dva trojuholníky \Delta ABC,  \,  \Delta A'B'C' sú podobné ak platí: \dfrac{a' } {a}= \dfrac{b' } {b}= \dfrac{c' } {c}=k

Konštantu k nazývame koeficient podobnosti. Ak je k väčšie ako 1, trojuholník sme zväčšili, ak je menšie ako 1 zmenšili a ak je rovný 1, trojuholníky sú zhodné.

Učili ste sa tiež vetu UU.

Veta UU: Ak sú v dvoch trojuholníkoch dva uhly zhodné, potom sú trojuholníky podobné.

Zároveň vieme, že súčet vnútorných uhlov trojuholníka je 180 ^ \circ.

Z uvedených znalostí možno odvodiť, že ak máme dva pravouhlé trojuholníky a jeden z ostrých uhlov jedného trojuholníka je zhodný s ostrým uhlom v druhom trojuholníku, potom sú trojuholníky podobné, pretože majú dva zhodné uhly.

Z toho vyplýva, že pomer strán pravouhlých trojuholníkov s rovnakými uhlami je rovnaký a môžeme zaviesť funkcie uhlov, ktoré budú odvodené z pomerov strán pravouhlého trojuholníka:

a':b':c'=k.a:k.b.k.c=a:b:c

Continue reading

Radián

Na základnej škole ste veľkosť uhla merali v stupňoch, kde celý kruh mal 360 stupňov, pravý uhol mal 90 stupňov, rovnostranný trojuholník mal 60 stupňové uhly, …

Rozdelenie kruhu na 360 stupňov zaviedli už Babylončania. Vo fyzike sa ukázalo užitočné merať uhly v radiánoch.

Radián je uhol, ktorý s vrcholom v strede kružnice vytne na kružnici oblúk s dĺžkou rovnou dĺžke polomeru. Značka rad.

Obvod kruhu počítame podľa vzorca: o=2\pi r, potom 360 stupňom zodpovedá 2\pi\, rad

1 \, rad=  \dfrac{360}{2 \pi}\doteq  57,3^\circ

StupneRadiány
0 0
30 \dfrac{ \pi }{6}
45 \dfrac{ \pi }{4}
60 \dfrac{ \pi }{3}
90 \dfrac{ \pi }{2}
120 \dfrac{ 2\pi }{3}
180 \pi
270 \dfrac{ 3\pi }{2}
360 2 \pi

Riešenia percentá

  1. Koľko percent je 30 zo 120?
    • p=\dfrac{c}{z}\cdot 100=30\cdot 100:120=25\%
  2. Koľko percent je 25 z 80?
    • p=25\cdot 100:80=31,25\%
  3. Koľko percent je 15 zo 40?
    • p=37,5\%
  4. Koľko percent je 8 z 24?
    • p=33,33\%
  5. Ak je základ 400, koľko je 25%?
    • z=400, p=25, c =?
    • p=\dfrac{c}{z}\cdot 100
    • 25=\dfrac{c}{400}\cdot 100
    • 25 \cdot 400 :100=c
    • c=100
    • 25 % zo 400 je 100
  6. Ak je základ 280, koľko je 30%?
    • 100% ….. 280
    • 1% ………..2,8
    • 30% ………30 x 2,8= 84
    • 30% z 280 je 84
  7. Ak je základ 90, koľko je 47%?
    • 100% ………. 90
    • 1% …………… 0,9
    • 47% …………47 x 0,9=42,3
    • 47% z 90 je 42,3
  8. Ak je základ 333, koľko je 50%?
    • 50% je polovica, 333:2=166,5
    • 50% z 333 je 166,5
  9. Ak je 10% 7, koľko je základ?
    • p=\dfrac{c}{z}\cdot 100
    • z= \dfrac{c}{p}\cdot 100
    • z= \dfrac{7}{10}\cdot 100=70
    • Ak je 10% 7, potom je základ 70 .
  10. Ak je 33% 99, koľko je základ?
    • 33% ………. 99
    • 1 % ……….. 99:33=3
    • 100% ……..3.100=300
    • Ak je 33% 99, základ je 300.
  11. Ak je 75% 90, koľko je základ?
    • 75% …… 90
    • 1% ……… 90:75=1,2
    • 100% ….. 1,2 x 100=120
    • Ak je 75% 90, základ je 120.
  12. Ak je 13% 26, koľko je základ?
    • 13% ……… 26
    • 1% ……….. 26:13=2
    • 100% ……. 2 x 100=200
    • Ak je 13% 26, základ je 200.
  13. Po zlacnení o 20% televízor stoji 400 euro. Koľko stál pred zlacnením?
    • Ak televízor zlacnel o 20%, jeho aktuálna cena je 80% pôvodnej ceny.
    • 80%……400
    • 1% ……..400:80=5
    • 100%…..5 x 100=500
    • Televízor pred zlacnením stál 500 euro.
  14. Po zlacnení o 25% stojí práčka 300 euro. Koľko stála pred zlacnením?
    • 100-25=75. Aktuálna cena je 75% pôvodnej ceny.
    • 75%…….300
    • 1%……….300:75=4
    • 100%…..4.100=400
  15. Po zdražení o 10% stojí auto 7700 euro. Koľko stálo pôvodne?
    • 100+10=110. Nová cena je 110% p;vodnej ceny.
    • 110%……7700
    • 1%………..7700:110=70
    • 100%……70.100=7000
  16. Pred zdražením stál lístok MHD 60 centov, po zdražení stojí 90 centov. Koľko percentné zdraženie to bolo?
    • 100%…….60
    • 1%………..60:100=0,6
    • zdraženie je 90-60=30
    • 30:0,6=50
    • Zdraženie lístkov bolo 50%.
  17. Mesačník na MHD stál 20 euro, po zdražení stojí 25 euro. Koľko percentné zdraženie to bolo?
    • 100%…………20
    • 1%…………….0,20
    • zdraženie 25-20=5
    • 5:0,2=25
    • Zdraženie mesačníkov bolo 25%.
  18. Pred zdražením som jazdil mesačne priemerne 25 krát s MHD, teraz jazdím o 40% menej často. O koľko odo mňa získa na tržbách dopravný podnik viac alebo menej za celý rok oproti minulosti?
    • Rok má 12 mesiacov, pôvodne som minul 12.25.0,6=180 euro
    • 25.0,6=15 jázd mesačne po zdražení
    • ročne 12.15.0,9=162 euro
    • 180-162=18
    • Dopravný podnik odo mňa získa ročne o 18 euro menej ako pred zdražením.

Percentá

Neraz sa stáva, že potrebujeme porovnať dva či viac objektov rovnakého druhu z hľadiska ich štruktúry, pričom objekty nie sú rovnako veľké. Majme dve školy, na jednu chodí 400 žiakov z toho 100 dievčat, na druhú 600 žiakov z toho 120 dievčat. Hoci na druhú školu chodí v absolútnej hodnote dievčat viac, relatívne ich tam chodí menej. Relatívny počet dievčat na oboch školách možno vyjadriť zlomkami:

d_{1}= \dfrac{100}{400}= \dfrac{1}{4} a d_{2}= \dfrac{120}{600}= \dfrac{1}{5}

Keď porovnávame relatívne počty, stalo sa zvykom, že relatívny počet prevedieme na zlomok s menovateľom 100 a aby sme nemuseli písať zlomok píšeme znak %.

Hore uvedené zlomky potom prejdú do tvaru d_{1} = \dfrac{25}{100}= 25\% a d_{2}= \dfrac{20}{100}= 20\%.

Znak % čítame ako percento, názov pochádza z latinského per cento znamenajúce na sto podobne ako jeden cent je stotina eura.

Continue reading

Pascalov trojuholník

Blaise Pascal

Hoci sa Pascalov trojuholník nazýva podľa matematika Blaise Pascala, neobjavil ho on, ale poznali ho už v 13. storočí čínski matematici. Pascal však tento trojuholník a vzťahy ktoré v ňom platia preštudoval do hĺbky a tak bol pomenovaný po ňom.

Ako vytvoríme Pascalov trojuholník?

Do nultého riadku napíšeme 1, do prvého dve jednotky tak, že jednotka z predchádzajúceho riadku je v strede medzi nimi. Na začiatok a koniec každého ďalšieho riadku napíšeme jednotku a na ostatné pozície napíšeme súčet čísel, ktoré sú nad ním vľavo a vpravo. Tak ako ukazuje animovaný obrázok:

Možno dokázať, že jednotlivé čísla Pascalovho trojuholníka zodpovedajú kombinačným číslam.

n \sum
0 {0 \choose 0} 2 ^ 0=1
n=1 {1 \choose 0} {1 \choose 1} 2 ^ 1=2
n=2 {2 \choose 0} {2 \choose 1} {2 \choose 2} 2 ^ 2=4
n=3 {3 \choose 0} {3 \choose 1} {3 \choose 2} {3 \choose 3} 2 ^ 3=8
n=4 {4 \choose 0} {4 \choose 1} {4 \choose 2} {4 \choose 3} {4 \choose 4} 2 ^ 4=16
n=5 {5 \choose 0} {5 \choose 1} {5 \choose 2} {5 \choose 3} {5 \choose 4} {5 \choose 5} 2 ^ 5=32

Vlastnosti Pascalovho trojuholníka

  • Pascalov trojuholník je osovo súmerný podľa osi prechádzajúcej horným vrcholom.
  • Súčet čísel v každom riadku zodpovedá n-tej mocnine čísla 2.
  • {n \choose k}= {n-1 \choose k-1}+ {n-1 \choose k} pre n > 0

Kombinačné čísla

Počet kombinácií bez opakovania sme vyjadrili vzorcom:

K(n)= \dfrac{n!}{(n-k)! \cdot k!}

Kombinačné číslo zapisujeme ako {n \choose k} , čítame ako n nad k a jeho hodnotu vypočítame rovnako ako počet kombinácií bez opakovania: {n \choose k}= \dfrac{n!}{(n-k)! \cdot  k!}

Kombinačné čísla sa vyskytujú nielen v kombinatorike, ale aj pri iných matematických úlohách. Napríklad koeficienty pri rozpísaní mocniny (a+b)^n usporiadané zostupne podľa exponentov pri a.

Zákon sily

Zo skúsenosti vieme, že:

  • oveľa ľahšie roztlačíme vozík s malým dieťaťom než rovnaký vozík s ťažkým chlapom
  • ak sa rovnakou rýchlosťou pohybuje vozík s malým dieťaťom a s ťažkým chlapom, vozīk s dieťaťom zastavīme výrazne ľahšie

Pokus: K prázdnemu a naloženému vozíku priviažeme špagáty, tie vedieme cez kladky a na druhý koniec špagátov priviažeme rovnaké závažia. Prázdny vozík bude mať väčšie zrýchlenie než plný, pričom na oba vozíky pôsobila rovnaká sila.

Na základe podobných pokusov môžeme odvodiť zákon sily.

Zákon sily (2. Newtonov pohybový zákon): Zrýchlenie telesa v inerciálnej vzťažnej sústave je priamo úmernė sile, ktorá naň pôsobī a nepriamo úmerné hmotnosti telesa.

Continue reading

Zákon zotrvačnosti

Každodenne sa stretåvame s takýmito a podobnými javmi:

  • ak cestujeme mestskou hromadnou dopravou a šofér prudko akceleruje, ak sa nedržíme, môžeme spadnúť, zdá sa nám, akoby na nás pôsobila sila, pôsobiaca v opačnom smere, než je smer pohybu vozidla
  • ak vodič prudko zabrzdí, naopak nás nejaká sila „hodí“ dopredu
  • ak vodič prechádza rýchlo zákrutou, nejaká sila nás tlačí nabok
  • keď sa v pračke začne bubon otáčať vo vysokých obrátkach, prádlo sa vyžmýka

Všetký tieto javy sú dôsledkom zákona zotrvačnosti.

Zákon zotrvačnosti (1. Newtonov pohybový zákon): Teleso v inerciálnej sústave zotrváva v pokoji alebo v rovnomernom priamočiarom pohybe, ak výslednica síl naň pôsobiacich je nulová.

Continue reading

Newtonove pohybové zákony

Isaac Newton (1643-1727)

Newtonove pohybové zákony alebo Newtonove zákony pohybu alebo Newtonove princípy sú základné zákony mechaniky, ktoré zverejnil Isaac Newton v diele Philosophiae naturalis principia mathematica v r. 1687. Tvoria axiomatický základ Newtonovej mechaniky.

Sú to tieto tri zákony:

Zobraziť článok

  1. Newtonov pohybový zákon (zákon zotrvačnosti): Teleso v inerciálnej sústave zotrváva v pokoji alebo v rovnomernom priamočiarom pohybe, ak výslednica síl, ktoré naň pôsobia je nulová.
  2. Newtonov pohybový zákon (zákon sily): Zmena hybnosti telesa za jednotku času je priamo úmerná veľkosti pôsobiacej sily.
  3. Newtonov pohybový zákon (zákon akcie a reakcie): Ak jedno teleso pôsobí na druhé teleso nejakou silou, druhé teleso pôsobí na prvé teleso rovnako veľkou silou opačného smeru.

Newtonove pohybové zákony umožňujú určiť, aký bude pohyb telesa v inerciálnej vzťažnej sústave, ak sú známe všetky sily, ktoré naň pôsobia.

Podrobnejšie v jednotlivých článkoch o pohybových zákonoch.

Zdroje:

Štatistika

Štatistika alebo matematická štatistika je odbor matematiky, ktorý skúma štatistické súbory – súbory štatistických jednotiek. Zosumarizujú sa znaky jednotlivých jednotiek a potom sa vyhodnotia charakteristické znaky celého štatistického súboru.

Štatistika úzko súvisí s pravdepodobnosťou. Niekedy môžeme preskúmať iba časť celku, vyhodnotením štatistických charakteristík tejto časti vieme s istou spoľahlivosťou určiť charakteristiky celého súboru.

Základné pojmy štatistiky

Štatistický súbor je súbor štatistických jednotiek s nejakou spoločnou vlastnosťou.

Štatistická jednotka je prvok štatistického súboru, jednotlivý objekt štatistického skúmania: osoba pri sčítaní obyvateľstva; častica pri skúmaní vlastností plynov, kvapalín; domácnosť pri výskume vybavenosti domácností…

Rozsah štatistického súboru je počet štatistických jednotiek v štatistickom súbore, n\in N.

Continue reading

Kvantifikátory

Niektoré výroky obsahujú slová každý, všetci, existuje, …

Každý a všetci neznamená to isté. Výroky:

Každý žiak triedy dostal z písomky jednotku.

Všetci žiaci triedy dostali z písomky jednotku.

sú ekvivalentné, ale napríklad výroky

Každý človek sa zmestí do tejto skrine.

Všetci ľudia sa zmestia do tejto skrine.

ekvivalentné nie sú. Z uvedeného vidno, že hovorová reč často nie je presná, máme v druhom výroku na mysli všetci súčasne alebo osobitne ako v prvom výroku?

Poznámka: Jeden zo žiakov uviedol iný príklad, kedy slovo každý nemožno nahradiť slovom všetci: Každý druhý.

Všeobecný kvantifikátor: Slovo každý(-á,-é) v matematike vyjadrujeme symbolom \forall. Tento symbol nazývame všeobecný kvantifikátor.

Existenčný kvantifikátor: Slovo existuje v matematike vyjadrujem symbolom \exists. Tento symbol nazývame existenčný kvantifikátor.

Continue reading

Graf funkcie

Aký má funkcia priebeh najlepšie uvidíme, ak nakreslíme jej graf.

Najprv nakreslíme súradnicové osy x a y a zvolíme veľkosť jednotkovej úsečky. Obvykle volíme rovnaké jednotkové úsečky pre os x aj y, ale ak funkcia prudko rastie alebo klesá, či naopak, y hodnoty budú v absolútnej hodnote výrazne menšie než hodnoty x môžeme zvoliť rôzne jednotkové úsečky.

Potom si vytvoríme tabuľku, do ktorej zapíšeme hodnoty x do prvého riadku a hodnoty y do druhého riadku. Ak by sme mali napríklad funkciu f(x)=x 2, mohla by tabuľka vyzerať takto:

x-4-3-2-1-0,500,51234
y169410,2500,2514916

Vedieme kolmice na os x v bodoch z prvého riadku a kolmice na os y v bodoch druhého riadku, kde sa tieto kolmice pretnú, označíme bod krúžkom. Keď sme vyznačili všetky body z tabuľky, prepojíme ich krivkou.

Kombinácie

Príklad 1: Trieda má 20 žiakov, koľkými spôsobmi z nich možno vytvoriť týždenníkov.
Riešenie: Prvého týždenníka môžeme vybrať z 20 možností a druhého z 19, ale u týždenníkov neurčujeme, ktorý z nich je prvý alebo druhý týždenník, takže ak ako prvého týždenníka zvolíme pôvodne druhého týždenníka a naopak, je to stále tá istá voľba, takže Súčin 20 krát 19 musíme predeliť dvoma. Celkový počet možností je teda 190.

Príklad 2: V hre loto sa žrebuje 6 čísel plus dodatkové číslo zo 49 čísel. Aká je pravdepodobnosť, že hráč vyhrá jackpot, ak podal jeden tip?

Než budeme riešiť druhý príklad, zadefinujeme, čo je to kombinácia.

Kombinácia k-tej triedy z n-prvkov bez opakovania je výber k prvkov z n-prvkovej množiny, pričom nezáleží na poradí prvkov a prvky sa neopakujú.

Continue reading

Riešenia (permutácie s opakovaním)

Úlohy

  1. Koľko permutácií s opakovaním možno vytvoriť z písmen slova OKOLO?
  2. V krabičke je 10 farbičiek: 4 červené, 3 modré, 2 žlté a jedna zelená. Koľkými spôsobmi ich môžeme usporiadať, ak farbičky rovnakej farby nevieme rozlíšiť?
  3. Osem študentov sa môže ubytovať v troch izbách, pričom dve sú trojposteľové a jedna dvojposteľové. Koľkými spôsobmi sa môžu študenti ubytovať?
  4. Šesťciferný kód na trezore sa skladá z rovnakých číslic ako číslo 926002 a zlodej to vie. Ako najdlhšie by zlodejovi trvalo, než by trezor otvoril, ak nastavenie jednej kombinácie číslic trvá 5 sekúnd?
  5. Koľko rôznych aj bezvýznamových slov možno zostaviť zo slova MATEMATIKA, ak sa použijú všetky písmená?

Continue reading

Variácie

Príklad: Šachového turnaja sa zúčastnilo 8 hráčov. Koľko rôznych umiestnení mohlo byť na prvých troch miestach?

Riešenie: Na prvom mieste mohlo byť 8 hráčov, ak už na prvom mieste máme hráča, na druhom môže byť 7 hráčov a na treťom už len 6, lebo dvaja už sú na prvom a druhom. Počet možných umiestnení na prvých troch miestach je teda 8.7.6=336.

Príklad: Trieda má 20 žiakov. Žiaci si idú voliť triedny výbor: predsedu, podpredsedu a pokladníka. Koľko rôznych zostáv môže mať výbor triedy.

Riešenie: Za predsedu môže byť zvolených 20 žiakov, za podpredsedu už len 19, lebo predseda nemôže byť aj podpredsedom a za pokladníka 18, lebo pokladník nemôže byť zároveň predsedom alebo podpredsedom. Počet rôznych zostáv výboru je 20.19.18=6840.

Oba vyššie uvedené príklady boli príkladmi variácií bez opakovania, keď každý prvok sa vo výbere mohol vyskytnúť iba raz a záležalo na poradí prvkov.

Variácia k-tej triedy z n prvkovej množiny je výber k prvkov z n prvkov.

Ak sa prvky nemôžu opakovať, je to variácia bez opakovania.

Ak sa prvky opakovať môžu, je to variácia s opakovaním.

Continue reading

Kombinatorika

Kombinatorika je matematická disciplína, ktorá sa zaoberá kombinovaním rôznych súborov objektov. Napr. Koľko je možných rôznych poradí na prvých troch miestach, ak je súťažiacich 10? Aká je pravdepodobnosť jackpotu v lotte? Ako spravodlivo nasadiť družstvá v turnaji? Ako zostaviť rozvrh školy, aby vyhovoval daným kritériám?

Výsledky kombinatoriky sa využívajú napríklad pri výpočtoch pravdepodobnosti.

Príklad: Koľko existuje dvojciferných čísel, v ktorých sa číslice neopakujú?

Continue reading

Funkcia

Funkcia na množine D je ľubovoľný predpis, ktorý každému prvku množiny D priradí práve jedno reálne číslo. Funkciu označujeme malým písmenom.

Prvky množiny D nazývame nezávislá premenná, ich obrazy sú závislá premenná. Nezávislú premennú obvykle označujeme x a závislú y, ale môžeme zvoliť také označenie, aby bolo zrejmé čo tieto premenné označujú. napríklad s=v.t, kde s je dráha, v je konštantná alebo priemerná rýchlosť a t je čas.

Continue reading

Logické spojky (logické operácie)

Výroky môžeme spájať logickými spojkami. Spojením dvoch elementárnych výrokov vznikne zložený výrok. Logické spojky predstavujú operátory logických operácií.

  • negácia – pred pôvodný výrok napíšeme nie je pravda že, tiež môžeme napísať predponu ne-. Negáciu výroku A môžeme označiť A‘ alebo použiť operátor \neg. Pri programovaní alebo v exceli používame NOT.
  • konjukciaa, ako operátor sa namiesto a môžu použiť \wedge, &. Pri programovaní alebo v exceli AND
  • disjunkcia alebo, ako operátor sa namiesto alebo používa \vee. Pri programovaní a v exceli OR.
  • exkluzívna disjunkciavylučujúce alebo, buď … alebo. Ako operátor použijeme pri programovaní a exceli XOR, pri matematickom zápise môžeme použiť \oplus.
  • implikáciaak A potom B, ak A tak B, z A vyplýva B, A implikuje B. Ako operátor používame A\implies B
  • ekvivalenciaA práve vtedy a len vtedy ak B. Ako operátor používame A\iff B

Continue reading

Logika

Logika je náuka, skúmajúca, ako správne uvažovať.

Logika sa používa vo všetkých vedeckých disciplínach, ale aj v bežnom živote.

Matematická logika je matematická disciplína, ktorá skúma logické výroky a logické súdy z formálneho hľadiska. Študuje pravdivosť zložených výrokov na základe pravdivosti / nepravdivosti elementárnych výrokov.

Logický výrok alebo len výrok je oznamovacia veta, o ktorej vieme rozhodnúť, či je pravdivá alebo nepravdivá.

Continue reading